
Smart farming is on the uprising demand all over the world. Artificial Intelligence (AI) is considered as one of the latest
tools to be utilized for smart farming. However, the practical implementation of AI for smart farming is often a challenge.
One of the challenges is to optimize the algorithms for accurate classification of plant diseases. In this study, we have
proposed a Convolutional Neural Network (CNN) for the classification of leaf diseases. The framework of the proposed
CNN is designed using the Depthwise Separable Convolution (DWS) technique that consists of two stages, i. e., depthwise
and pointwise feature extractions. We have compared the model with the classical convolutional approach. Results show
that the proposed model outperformed the conventional CNNmodel with a precision of 0.932, recall 0.992, F1 score of 0.961
and a test accuracy of 95.25% whereas the conventional model achieved precision 0.941, recall 0.961, F1 score 0.951 and
93.76% of test accuracy.
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1．Introduction

Finding sustainable methods to generate enough food
to feed everyone is crucial because of the world’s
continually growing population. Innovative solutions for
the agricultural sector, including smart farming methods
to boost productivity and efficiency, have been made
possible by modern technology(1)～(3). Smart farming
involves the use of cutting-edge technology to improve a
variety of farming operations, including irrigation,
fertilization, and pest control, such as Internet of Things
(IoT) devices, drones, and machine learning
algorithms(4), (5). But despite these developments, a

major problem, food security, still exists. According to
the Food and Agriculture Organization (FAO), plant
diseases are thought to be responsible for a sizable share
of yearly crop losses that result in billions of dollars in
economic losses(6). Unpredictable weather patterns,
land degradation, and population increase make the
issue worse. Finding strategies to reduce crop losses and
preserve global food security is crucial(3), (7).
Fortunately, scientists and researchers are actively

seeking solutions to these problems. This includes the
development of new crop varieties that are resistant to
diseases and pests, as well as the use of innovative
technologies to identify and diagnose plant diseases in
their early stages(8). Additionally, precise farming
techniques that enable farmers to make data-driven
decisions about their crops can help reduce losses and
increase yields(9).
Global food security is a complicated, multifaceted
subject that necessitates creative solutions(10). Smart
farming technologies have been made possible by
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contemporary technology, but more research and
innovation are urgently needed to provide a sustainable
and reliable food supply for the world’s expanding
population(4), (11).
Many scientists have worked hard to create efficient

techniques for spotting and stopping plant diseases in
their early stages. Early identification is essential
because it enables farmers to act right away to stop the
disease’s spread and save crop losses.
To achieve this goal,many researchers have turned to
computer vision-based techniques, including machine
learning and deep learning(4), (11). These methods involve
training algorithms to recognize patterns and identify
the early signs of disease in plant images. By analyzing
these images, these algorithms can detect changes in
plant color, texture, and shape, which may indicate the
presence of a disease(4).
The traditional methods of leaf classification relied

heavily on manual feature extraction, which was time-
consuming, subjective, and limited in terms of capturing
the intricate details and patterns present in leaf images.
In contrast, deep learning techniques like CNNs have
shown great potential in automatically learning discrimi-
native features directly from raw data, eliminating the
need for manual feature engineering. LeafNet(12) was
proposed as a CNN model for leaf classification, aiming
to overcome the limitations of manual feature extraction
in automated plant species identification. By using
CNNs, LeafNet could learn discriminative features
directly from raw leaf images, enabling accurate and
efficient leaf recognition. It achieved high accuracy rates
and outperformed traditional methods. However, re-
searchers sought to improve LeafNet further by
incorporating techniques like depthwise and pointwise
convolutions, which aimed to enhance efficiency without
sacrificing accuracy.
This study aimed to improve the accuracy of the

LeafNet model(12) for classifying plant diseases by
modifying its architecture. The original LeafNet model
was designed using a sequential convolutional layer
approach,which has some limitations. Sequential models
rely on a fixed order of operations, which may not
effectively capture complex patterns and relationships
within the input data. They may struggle to handle
spatial dependencies and can result in limited represen-
tational capacity.
To address these limitations, we introduced depth-
wise and pointwise convolutional layers(13) into the
LeafNet architecture. Depthwise convolutional layers

perform spatial filtering independently for each input
channel, capturing more fine-grained details and
allowing the model to better understand local patterns
within the image. Pointwise convolutional layers further
enhance the model’s ability to capture higher-level
features by projecting the output of depthwise convolu-
tions into a new feature space. By incorporating these
layers, we aim to enhance the model’s capability to
extract meaningful and discriminative features from the
input data, thereby improving classification accuracy
and enabling better generalization to unseen rice leaf
disease samples.
By doing so, we were able to reduce the number of
parameters required for the model while still improving
its accuracy compared to the original LeafNet model.
The addition of depthwise and separable convolutional
layers allowed the model to more efficiently extract and
process features from the input data, resulting in a more
accurate classification of plant diseases. This approach
also helped to reduce the risk of overfitting the model to
the training data, making it more robust and reliable in
real-world applications.
This paper comprises of 5 sections, Background study

is given in Section 2, whereas Section 3 describes about
the methodology adopted in this study. Section 4
presents the results and discussions, and Section 5
summarizes and concludes this study.

2．Background Study

Researchers interest in automating the detection and
classification of plant diseases has grown during the past
several years. Utilizing CNNs is one strategy that has
shown promise in this field. CNNs are a class of deep
learning models that have gained significant popularity
in computer vision tasks, including the classification of
diseases. CNNs are specifically designed to effectively
process and analyze visual data, making them well-
suited for image-based tasks.
CNNs have been used for a variety of tasks, such as
disease diagnosis, crop monitoring, intelligent spraying,
yield and price prediction, crop and soil monitoring,
disease diagnosis, and farm monitoring(14).
The key characteristic of CNNs lies in their ability to
automatically learn hierarchical representations from
raw image data. Unlike traditional machine learning
algorithms, CNNs can automatically extract relevant
features from images through a series of convolutional
and pooling layers. These layers perform local receptive
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field operations, allowing the network to capture spatial
relationships and patterns in the input images.
The use of CNNs for plant disease classification is

particularly promising because they are well-suited to
processing large amounts of image data, such as the
images of diseased that are used for diagnosis(15), (16). By
training the CNN on a large dataset of labeled images, it
can learn to automatically identify patterns and features
that are indicative of specific diseases,making it possible
to classify new images with a high degree of accuracy.
Gokulnath et. al.(17) proposed a CNN model for disease
identification on the Plant Village dataset. Their model
utilized a loss-fusion technique that combined multiple
loss functions to improve the accuracy of the model. The
proposed model achieved an impressive accuracy of
98.93%, demonstrating the potential of CNNs for
accurately identifying plant diseases. This study high-
lights the importance of utilizing advanced machine
learning techniques to improve the accuracy of disease
identification models, which can ultimately lead to more
effective disease management strategies in agriculture.
Chen et. al.(18) proposed an improvement on the final

layer of the VGG model, which was originally trained on
the ImageNet dataset. They transferred the learned
feature information to the Inception Module and applied
it to a merged dataset of maize and rice. The proposed
model achieved an accuracy of 92%, indicating the
effectiveness of the transfer learning approach. This
study highlights the importance of utilizing pre-trained
models and transfer learning techniques to improve the
accuracy of plant disease classification models. By
building upon the knowledge acquired from previous
models, researchers can develop more accurate and
efficient solutions for identifying plant diseases, which
can have significant benefits for agriculture and food
security.
Shijie et. al.(19) proposed a methodology for tomato

disease classification using the VGG16 model combined
with the Multi-Class Support Vector Machine (MSVM)
algorithm. Their study involved the classification of ten
different disease classes, and they achieved an accuracy
of 89%. This study highlights the potential of combining
deep learning models with traditional machine learning
algorithms to improve the accuracy of plant disease
classification. Sahu et al.(20) conducted an experiment on
two popular CNN models, namely GoogleNet and
VGG16, to classify beans in a dataset. The results
showed that GoogleNet outperformed VGG16, achieving
an accuracy of 95%. This study demonstrated the

effectiveness of CNN models in accurately classifying
different types of beans, which can have significant
implications for improving crop yield and food security.
The findings suggest that GoogleNet may be a suitable
model for similar classification tasks involving plant
diseases or other agricultural applications.
Tiwari et. al.(21) proposed a novel deep convolutional
neural network to identify 27 diseases in six different
crops. They enhanced the CNN on a complicated and
difficult dataset, achieving an impressive cross-valida-
tion accuracy of 99.58% on average. This study
highlights the potential of deep learning techniques for
accurate and efficient detection of multiple plant
diseases, which can ultimately aid in the improvement of
crop yield and food security.
Pierre Barré et. al.(12) introduced a novel CNN called

LeafNet, which was developed to classify plant leaves
based on their level of infection. The authors reported
achieving high accuracy levels of 98.69% and 98.75% on
smaller datasets, while they achieved a lower accuracy
of 79.66% on a larger dataset. This study provided an
initial framework for further improvements in the
detection and classification of plant diseases using deep
learning techniques. Similarly, this study aimed to
improve the accuracy of the LeafNet model for
classifying plant diseases by modifying its architecture.
To achieve this, we added depthwise and separable
convolutional layers to the base model. By doing so, we
were able to reduce the number of parameters required
for the model while still improving its accuracy
compared to the original LeafNet model. The addition of
depthwise and separable convolutional layers allowed
the model to more efficiently extract and process
features from the input data, resulting in a more
accurate classification of plant diseases. This approach
also helped to reduce the risk of overfitting the model to
the training data, making it more robust and reliable in
real-world applications.
Our modified architecture provided a more efficient
and accurate solution for classifying plant diseases, with
reduced computational requirements compared to the
original LeafNet model. This approach has the potential
to improve the efficiency and effectiveness of disease
diagnosis in the agricultural industry.

3．Methodology

3.1 Dataset
We utilized the New Plant Disease Dataset(22)which
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consists of 87,000 images of diseased leaves across 38
categories. Out of these, we used 70,295 images for
training and validation while 16,705 images were
reserved for testing purposes. To enhance our model
performance, we split the training dataset into a ratio of
90 : 10 for training and validation, respectively. As a
result, our training dataset contains 63,282 images while
the validation dataset contains 7,013 images, both
distributed across 38 classes. Fig. 1 shows the sample
images from the dataset with their respective disease.
The New Plant Disease Dataset available on Kaggle(22)

comprises 38 categories of leaf diseases including Apple,
Potato, Raspberry, Strawberry, Squash, Corn, Grape,
Blueberry, Soybean, Peach, and Cherry.

3.1.1 Data pre-processing
In order to prepare the dataset for training,we applied

various pre-processing techniques on the images.
Firstly, we resized all images to a fixed size of 224×224
pixels. This resizing was done to ensure consistency in
image sizes across the dataset. Next,we performed data
augmentation techniques to increase the diversity of the
dataset and to prevent overfitting of the model. Data
augmentation techniques include rotation, flipping, and
shifting of the images. After data augmentation, we
normalized the pixel values of the images to ensure that
they were within a range of 0 to 1. Overall, the pre-
processing and augmentation steps were crucial in
ensuring that the dataset was diverse and suitable for

training the deep learning model. These steps helped to
improve the accuracy of the model and prevent
overfitting, resulting in better generalization perform-
ance.

3.2 Methodology Overview
The present study employed a specific methodology,

which is summarized in Fig. 2. The figure illustrates
various components, including dataset images, data pre-
processing, model training, model evaluation, and
classification. First step is of collection of dataset
images, the information about the dataset images has
already been described in section 3.1. Similarly, the
second step in our proposed methodology is data
preprocessing and data augmentation, for data prepro-
cessing we used various techniques like resizing,
normalization and converting the categorical labels into
one-hot encoding. For data augmentation to make the
dataset more diverse, we applied random rotations,
horizontal and vertical flips, and brightness and contrast
adjustments to the images.
For the model training, we used LeafNet as a base
model and modified it by adding Depthwise and
Separable Convolutional Layers to reduce the number of
parameters and improve the accuracy of the model. The
modified model was trained on the pre-processed and
augmented dataset.
For model evaluation, we evaluated the performance
of our model using various metrics such as accuracy,
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precision, recall, and F1 score. We also used confusion
matrix to analyze the classification results.
The final step i.e., classification, we used our trained

model to classify the test set images into their respective
disease categories.

3.2.1 LeafNet Model architecture
LeafNet is a CNN architecture proposed by Pierre

Barré et. al.(12). Fig. 3 illustrates the original architec-
ture of the LeafNet model. The model architecture of
LeafNet consists of three convolutional layers, three
max-pooling layers, and two fully connected layers.
There are 64 filters in the first convolutional layer with

a kernel size of 5×5, 128 filters in the second
convolutional layer with a kernel size of 3×3, and 256
filters in the third convolutional layer with a kernel size
of 3×3. The three convolutional layers are followed by
one max-pooling layer each. The number of units in the
1,024 and 38 completely connected layers, respectively,
corresponds to the number of leaf disease classes.

3.2.2 Proposed Depthwise and Separable CNN
model architecture

CNNs has been widely used architecture for image
classification tasks. Depthwise separable convolution is a
modification of the standard convolutional layer that
reduces the number of computations while maintaining
the accuracy of the model. This is achieved by splitting
the convolution into two separate operations : a depth-
wise convolution and a pointwise convolution. In the
depthwise convolution layer, each filter is applied to a
single input channel, resulting in a set of output channels
equal to the number of input channels. This process is
followed by a pointwise convolution layer, where a 1×1
filter is applied to combine the output channels from the
depthwise convolution. This process reduces the num-
ber of parameters required by the model and also
reduces the computational cost of the convolution
operation. The Depthwise Separable Convolution can be
used as a replacement for the standard convolutional
layer in a CNN architecture, allowing for the creation of
more lightweight models that can be trained and
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executed on resource-constrained devices.The modified
model used in this study is an adaptation of the original
LeafNet model. The main modifications were the
addition of depthwise and separable convolutional
layers, which were inserted after the initial convolution-
al layers of the LeafNet architecture. These layers were
used to extract more refined and diverse features from
the input images. Specifically, the depthwise convolu-
tional layers perform spatial convolutions on each input
channel separately, while the separable convolutional
layers combine depthwise and pointwise (1×1) convolu-
tions to reduce the computational cost and improve the
model’s efficiency. Fig. 4 illustrates the architecture of
the proposed model. The modified model architecture
consists of four main blocks : (1) convolutional layers,
(2) depthwise convolutional layers, (3) separable
convolutional layers, and (4) fully connected layers.
The convolutional layers have 32, 64, and 128 filters with
a kernel size of 3×3, followed by a max-pooling layer
with a stride of 2×2. The depthwise convolutional layers
have 32, 64, and 128 filters with a kernel size of 3×3.
The separable convolutional layers have 32 and 64 filters
with a kernel size of 3×3. The fully connected layers
consist of two layers with 512 and 38 units, respectively,
followed by a softmax activation function to produce the
final classification output.

4．Results and discussion

4.1 Hyperparameters
The hyperparameters used in this study were
carefully selected to optimize the performance of the
proposed model. Three different optimizer e.g., Adam,
RMSprop and SGD was used with a learning rate of
0.0001, which is a commonly used optimizer in deep
learning. A batch size of 128 was chosen. The number of
epochs was set to 50. The proposed model architecture
contains a total of 12,134,086 parameters, out of which
12,133,126 are trainable parameters and 960 are non-
trainable parameters. The proposed model architecture
and hyperparameters were carefully chosen by random
search method to optimize the performance while
keeping the model lightweight. This ensures that the
model can be trained and deployed efficiently on devices
with limited computational resources. Table 1 given
below described the achieved results on the basis of
accuracies with three different optimizers. This table
provides the evaluation metrics for three different
optimizers (Adam, RMSprop, and SGD) on two
different models (LeafNet and Proposed Model) for a
classification task.The columns “Train-Acc” and “Valid-
Acc” indicate the accuracy of the models on the training
and validation sets, respectively. The higher the values,
the better the model’s performance. The columns
“Train-Loss” and “Valid-Loss” represent the loss of the
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Table 1 Training, Validation and test accuracies and losses for each optimizer

Optimizer Model Training
Accuracy

Validation
Accuracy

Testing
Accuracy

Training
Loss

Validation
Loss

Testing
Loss

Adam LeafNet 96.78 94.17 93.76 0.107 0.152 0.213
Proposed Model 98.45 96.38 95.25 0.091 0.103 0.181

RMSprop LeafNet 95.17 93.35 91.19 0.143 0.217 0.283
Proposed Model 97.44 94.64 92.93 0.114 0.176 0.249

SGD LeafNet 89.23 84.57 82.16 0.323 0.428 0.475
Proposed Model 90.23 81.91 79.65 0.293 0.489 0.532



models on the training and validation sets, respectively.

4.2 Evaluation metrices
Evaluation metrics are crucial to assess the perform-

ance of a classification model. Precision, recall, and F1
score are important evaluation metrics that are calcu-
lated from the confusion matrix. Precision is defined as
the ratio of true positives to the sum of true positives and
false positives. It measures how many of the samples
classified as positive are actually positive. Recall, on the
other hand, is defined as the ratio of true positives to the
sum of true positives and false negatives. It measures
how many of the actual positive samples were correctly
identified by the model. F1 score is the harmonic mean of
precision and recall, and it provides a balanced measure
of the model’s performance. These evaluation metrics
provide a comprehensive understanding of the perform-
ance of the proposed model. The obtained results of
precision, recall, F1 score and test accuracy has been
depicted in Fig. 5. Test accuracy represents the
proportion of correct predictions made by the model out
of all predictions.

4.3 Discussion
Looking at the results, it is evident that the Proposed

Model outperformed LeafNet in all aspects except for
precision. The Proposed Model achieved a test accuracy
of 95.25%, which is significantly higher than the test
accuracy of LeafNet at 93.76%.Moreover, the Proposed
Model had a lower test loss of 0.181 than LeafNet model
i.e., 0.213, indicating that it generalizes better to unseen
data. These results suggest that the Proposed Model is a

better choice for this particular task. When comparing
the performance of the three optimizers, Adam consis-
tently outperformed RMSprop and SGD. This is evident
from the fact that the proposed model achieved the
highest test accuracy and lowest test loss when trained
using Adam. In contrast, the performance of RMSprop
and SGD was lower across all models. Therefore,we can
conclude that Adam is the optimal optimizer for this
dataset. In this case, the proposed model outperformed
LeafNet in all other aspects, indicating that it is a more
robust and reliable model. According to the Fig. 5, the
proposed model has a higher recall value i.e., 0.992
compared to LeafNet with recall of 0.961. In addition,
the F1-score is higher for the proposed model i.e., 0.961
as compared to LeafNet 0.951. The test accuracy for the
proposed model is also higher i.e., 0.952 or 95.25% as
compared to LeafNet i.e., 0.937 or 93.76%. Overall, the
proposed model performs better than LeafNet based on
these evaluation metrics.

5．Conclusion

The experimental results of our study suggest that the
proposed model outperforms LeafNet in terms of
accuracy, precision, recall, and F1-score. The proposed
model achieved a test accuracy of 95.25%, which is a
significant improvement over LeafNet accuracy of
93.76%.Additionally, the proposed model showed higher
precision, recall, and F1-score than LeafNet. The
results also indicate that the choice of optimizer has a
significant impact on the performance of both LeafNet
and the proposed model. The Adam optimizer showed
the best performance for both models, followed by
RMSprop and SGD. It is important to note that the
proposed model achieved better performance with all
three optimizers compared to LeafNet. Overall, the
results of our study suggest that the proposed model has
the potential to be a valuable tool in the classification of
images. Further studies could investigate the generaliz-
ability and robustness of the proposed model to different
types of data and environments.
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